
Budget-Aware Computation:

A�ordable Precision on Mini-Apps

Abida Haque
ahaque3@ncsu.edu

North Carolina State University

Timothy Goetsch
Timothy.Goetsch@student.nmt.edu

New Mexico Institute of Mining and Technology

Introduction

We can’t keep adding processors or electrical power
for running scientific applications on supercomput-
ers [1]. One possible solution is lower precision com-
puting.

Background

Scientific computation can benefit from lower pre-
cision computing. The IEEE 754 standard defines
floating point numbers that take 32 or 64 bits of
storage, known as single and double precision re-
spectively. The standard also defines a floating point
format for 16 bits of storage, known as half preci-
sion. Half precision exists on GPUs and may be a
codesign opportunity on CPUs as well.

sign exponent fraction

(a) double
sign exponent fraction

(b) single
sign exponent fraction

(c) half
Figure 1: Di�erent Precisions, IEEE 754 standard

Lower precision benefits

• More e�cient use of memory bandwidth.
• Halves the memory footprint.
• Increase number of vector operations with

current AVX architecture.

Fogerty et al. [2] showed two examples of applica-
tions that benefit from lower precision methods and
experimented on a variety of architectures. We con-
tinue their work by using mixed precision on a dif-
ferent application, Tycho2, a LANL mini-app.

Application: Tycho2

Solves a key kernel in radiation transport
codes [3].
• Latency, bandwidth, and computationally

bound.
• 6-dimensional arrays take up most of the

computation:
•

Q (source)
•

Q

total

(intermediate calculation)
• � (solution).

• Unstructured mesh causes problem to be
latency bound.

Figure 2: Representing Tycho2 unstructured tetrahedral
mesh. Drawing is 2D but actual mesh is 3D.

Methods

Original code had Q, Q

total

, and � in double preci-
sion. We created two ports as shown in table 1.

Q Q

total

�
double double double
single single single
single double double

Table 1: Original version is all double precision. We use all
single precision as well as a mixed precision method to see how
the trade-o�s a�ect computational accuracy and runtime.

We used templates to toggle Q between single and
double precision, For scaling, we test 32-way paral-
lelized versions of the code, with 32 MPI processes
per node with 1 thread per process.

Results

Single precision gives solutions that are visually indistinguishable from double, but has faster runtime.

5.0e+06

1.0e+07

1.5e+07

0 50 100 150 200
time(sec)

m
em

or
y 

(k
B) Variant

double

Q single

single

Memory use over time for 64 nodes

(a) Lower memory use with lower precision

●

●

●

●

●

●

●

●

●

15

18

21

24

1 8 641 8 641 8 64
nodes

tim
e(

se
c)

precision
●

●

●

double

Q single

single

Number of nodes versus total source iteration time to answer

(b) We can get a lower runtime by using lower precision.
Figure 3: We can get lower cost for similar errors.

Fixed Budget Computation

It is also possible to keep memory or energy use con-
stant. We may run at a lower precision at a higher
resolution (vice a high precision at low resolution)
and get an equivalent fidelity with the same mem-
ory budget.

Future Work

By showing that lower floating point precision is ac-
ceptable for scientific research, hardware designers
may take note and design GPUs to account for half-
precision floating point operations as well.
Di�erent directions the research can take:
• What levels of precision still provide a correct

answer?
• How can the error of the solution be bounded

with respect to the available levels of precision?
• Can we specify the lengths of the mantissa and

exponent for specific applications? What about
non-powers of two?

• Are some applications faster and more accurate
using fixed point rather than floating point?

References

[1] ASCAC Subcommittee et al.
Top ten exascale research challenges.
US Department Of Energy Report, 2014.

[2] Shane Fogerty, Siddhartha Bishnu, Yuliana Zamora, Laura Monroe, Steve Poole, Michael Lam, Joe
Schoonover, and Robert Robey.
Thoughtful precision in mini-apps.
In Cluster Computing (CLUSTER), 2017 IEEE International Conference on, pages 858–865.
IEEE, 2017.

[3] Tycho2.
https://github.com/lanl/tycho2.

Acknowledgements

Many thanks to our mentors: Laura Monroe (HPC-DES, Bob Robey (XCP-2), Kris Gar-
rett (CCS-2), and Hai Ah Nam(CCS-2).
Support for this project was provided by U.S. Department of Energy at Los Alamos
National Laboratory supported by Contract No. DE-AC52-06NA25396.
Data for this project was collected on the Darwin cluster at Los Alamos National Labora-
tory, and the Cori cluster at the National Energy Research Scientific Computing Center.

LA-UR-18-27057

https://github.com/lanl/tycho2

